Minimal Green energy points

Let \mathcal{M} be a compact Riemannian manifold and let G(x, y) be the Green function for the Laplacian:

$$\Delta_x G(x,y) = \delta_y(x) - V^{-1} \text{vol}$$

Define the (discrete) Green energy by

$$E_G(x_1,...,x_N) = \sum_{i\neq j} G(x_i,x_j).$$

If $\mathcal{M} = \mathbb{S}^2$, then $G(x, y) = \log ||x - y||^{-1}$ (essentially).

ロトス値とスタンスタントは

DQC

Juan G. Criado del Rey – University of Cantabria (SPAIN) Minimal Green energy points

Theorem

For a collection of N minimal logarithmic energy points on \mathbb{S}^2 there is a radius r = r(N) such that $x_i \notin B(x_j, r)$ for every $i \neq j$.

 \Rightarrow Separation distance result.

The natural "area of influence" in a general compact manifold appears to be not a geodesic ball, but a *harmonic ball*.

 $B^{\text{harm}}(p, t) = \text{the blob of } t \text{ units of fluid injected at } p.$

Juan G. Criado del Rey – University of Cantabria (SPAIN)