Minimal Green energy points

Let \mathcal{M} be a compact Riemannian manifold and let $G(x, y)$ be the Green function for the Laplacian:

$$
\Delta_{x} G(x, y)=\delta_{y}(x)-V^{-1} \mathrm{vol}
$$

Define the (discrete) Green energy by

$$
E_{G}\left(x_{1}, \ldots, x_{N}\right)=\sum_{i \neq j} G\left(x_{i}, x_{j}\right)
$$

If $\mathcal{M}=\mathbb{S}^{2}$, then $G(x, y)=\log \|x-y\|^{-1}$ (essentially).

Separation distance

Theorem

For a collection of N minimal logarithmic energy points on \mathbb{S}^{2} there is a radius $r=r(N)$ such that $x_{i} \notin B\left(x_{j}, r\right)$ for every $i \neq j$.
\Rightarrow Separation distance result.
The natural "area of influence" in a general compact manifold appears to be not a geodesic ball, but a harmonic ball.

$B^{\text {harm }}(p, t)=$ the blob of t units of fluid injected at p.

